Disentangling common and specific neural subprocesses of response inhibition
نویسندگان
چکیده
Response inhibition is disturbed in several disorders sharing impulse control deficits as a core symptom. Since response inhibition is a cognitively and neurally multifaceted function which has been shown to rely on differing neural subprocesses and neurotransmitter systems, further differentiation to define neurophysiological endophenotypes is essential. Response inhibition may involve at least three separable cognitive subcomponents, i.e. interference inhibition, action withholding, and action cancelation. Here, we introduce a novel paradigm - the Hybrid Response Inhibition task - to disentangle interference inhibition, action withholding and action cancelation and their neural subprocesses within one task setting during functional magnetic resonance imaging (fMRI). To validate the novel task, results were compared to a battery of separate, standard response inhibition tasks independently capturing these subcomponents and subprocesses. Across all subcomponents, mutual activation was present in the right inferior frontal cortex (rIFC), pre-supplementary motor area (pre-SMA) and parietal regions. Interference inhibition revealed stronger activation in pre-motor and parietal regions. Action cancelation resulted in stronger activation in fronto-striatal regions. Our results show that all subcomponents share a common neural network and thus all constitute different subprocesses of response inhibition. Subprocesses, however, differ to the degree of regional involvement: interference inhibition relies more pronouncedly on a fronto-parietal-pre-motor network suggesting its close relation to response selection processes. Action cancelation, in turn, is more strongly associated with the fronto-striatal pathway implicating it as a late subcomponent of response inhibition. The new paradigm reliably captures three putatively subsequent subprocesses of response inhibition and might be a promising tool to differentially assess disturbed neural networks in disorders showing impulse control deficits.
منابع مشابه
Parsing decision making processes in prefrontal cortex: Response inhibition, overcoming learned avoidance, and reversal learning
Reversal learning refers to the ability to inhibit or switch responding to an object when the object-reward contingency changes. Deficits in this process are related to social abnormalities, impulsiveness, and a number of psychiatric disorders. A range of neural regions play a role in this process, including dorsolateral prefrontal cortex (dlPFC), dorsomedial prefrontal cortex (dmPFC), and infe...
متن کاملThe Effectiveness of HAMRAH Cognitive Rehabilitation Package on Improving Executive Functions (Working Memory and Response Inhibition) in Students with Dysgraphia
Dysgraphia is one of the common symptoms of specific learning disorders. children with dysgraphia have several cognitive problems. This research was conducted with the aim of investigating the effectiveness of HAMRAH cognitive rehabilitation package on improving executive functions (working memory and response inhibition) in children with dysgraphia. The present research was semi-experimental i...
متن کاملP185: Survey Effect of Histamine on Microglia in Neurodegenerative Diseases
Neurodegenerative diseases contain Multiple Sclerosis (MS), Alzheimer’s disease (AD) and Parkinson’s disease (PD), are characterized by neuronal death and neuronal degeneration in specific regions of the central nervous system (CNS). Microglia are the basic immune brain cells and play a role in homeostasis after inflammation challenge. Microglia involves in Neurodegenerative disease...
متن کاملInfluence of acute stress on response inhibition in healthy men: An ERP study.
The current study investigated the influence of acute stress and the resulting cortisol increase on response inhibition and its underlying cortical processes, using EEG. Before and after an acute stressor or a control condition, 39 healthy men performed a go/no-go task while ERPs (N2, P3), reaction times, errors, and salivary cortisol were measured. Acute stress impaired neither accuracy nor re...
متن کاملP 116: The Effect of Galectin-3 and Lanthionine Ketimine Ester in Neural Recovery after Spinal Cord Injury
Spinal cord injury (SCI) is a trauma that disturbs motor, sensitive and autonomic function and directly impacts the quality of life. After physical damage, releasing of pro-inflammatory proteins and cytokines occurs and with collaboration of immune system cells, an immune response begins in the brain tissue. The result of neuroinflammation is edema, apoptosis and release of axonal growth inhibi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 64 شماره
صفحات -
تاریخ انتشار 2013